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Nearest Neighbor Search

¢ Retrieve the nearest neighbor of query point Q
¢ Simple Strategy:
— convert the nearest neighbor search to range search.
— Guess a range around Q that contains at least one object say O

« if the current guess does not include any answers, increase range size
until an object found.

— Compute distance d’ between Q and O
— re-execute the range query with the distance d’ around Q.

— Compute distance of Q from each retrieved object. The object at
minimum distance is the nearest neighbor!!!

Naive Approach
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Issues: how to guess range?

The retrieval may be sub-optimal if
incorrect range guessed.

Would be a problem in high
dimensional spaces.
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MINDIST Property

* MINDIST is a lower bound of any k-NN distance
Yo € O.MINDIST(Q. R) < ||(Q.0)|

To1,p2)
o)

(p1,p2)

°
(p1,p2)

(s¥s2)

(p1,p2)
(p1,p2)

A Better Strategy for KNN search

¢ Asorted priority queue based on MINDIST;
* Nodes traversed in order;
* Stops when there is an object at the top of the

queue; (1-NN found)

¢ k-NN can be computed incrementally;




Priority Queue
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MBR Face Property

e MBR is an n-dimensional Minimal Bounding
Rectangle used in R trees, which is the minimal
bounding n-dimensional rectangle bounds its
corresponding objects.

* MBR face property: Every face of any MBR

contains at least one point of some object in
the database.

MBR Face Property — 2D
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MBR Face Property — 3D

Improving the KNN Algorithm

¢ While the MinDist based algorithm is I/O
optimal, its performance may be further
improved by pruning nodes from the priority
queue.
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Properties of MINMAXDIST

* MINMAXDIST(P,R) is the minimum over all dimensions
distances from P to the furthest point of the closest face of
R

* MINMAXDIST is the smallest possible upper bound of
distances from the point P to the rectangle R.

* MINMAXDIST guarantees there is an object within the R
at a distance to P less than or equal to it.

30 € 0./(Q. 0)|| <MINMAXDIST(Q. R)

¢ MINMAXDIST is an upper bound of the 1-NN
distance

MINDIST & MINMAXDIST

MINDIST(P,R) <= NN(P) <= MINMAXDIST(P,R)

MinDist & MinMaxDist — 3D

Query Point Q

MinMaxDist(Q,R) & MinDist(Q,R)

Rectangle R

Pruning 1

Downward pruning: An MBR R is discarded
If there exists another R’ such that MINDIST(P,R)> MINMAXDIST(P,R")

Pruning 2

« Downward pruning: An object O is discarded

If there exists an R such that Actual_dist(P,0) > MINIMAXDIST(P,R)
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Pruning 3

e Upward pruning: An MBR R is discarded
If an object O is found such that MINDIST(P,R) > Actual_dist(P,O0)
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MINDIST vs MINMAXDIST Ordering

« MINDIST: optimistic
*« MINMAXDIST: pessimistic

e Example: MINDIST ordering finds the 1-NN first

MINDIST vs MINMAXDIST Ordering

NN is there
¢ Example: MINMAXDIST ordering finds the 1-NN first

Generalize to k-NN

» Keep a sorted buffer of at most k current nearest
neighbors

 Pruning is done according to the distance of the
furthest nearest neighbor in this buffer

Outline

¢ Spatial Index — R-Tree
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¢ Optimized NN Query — branch-and-bound
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Nearest Neighbor Scalability - Synthetic Data
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Database Size Scalability - Synthetic Data
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Key Insights

# of pages accessed grows when k grews;
The denser the dataset, the more page access;

MinDist v.s. MinMaxDist: same in shape, but
MinMaxDist has more 1/O cost;

In Dense area, MinMaxDist is bad;




